Antibody-drug conjugates: the new generation of biotechnological therapies against cancer

Guadalupe Melgarejo-Rubio,¹ Sonia M. Pérez-Tapia,² Emilio Medina-Rivero² and Marco A. Velasco-Velázquez*¹
¹Universidad Nacional Autónoma de México, Faculty of Medicine, Pharmacology Department; ²Instituto Politécnico Nacional, National School of Biological Sciences, Unit of Development and Research in Bioprocesses. Mexico City, Mexico

Abstract

Therapeutic antibodies are recombinant proteins used in the treatment of cancer. There is a new generation of monoclonal antibodies with activity against cancer cells, known as antibody-drug conjugates. These molecules are made up of three elements: a monoclonal antibody, a highly potent cytotoxic drug, and a chemical linker that binds them together. The antibody recognizes tumor antigens, thereby allowing targeted delivery of the cytotoxic agent to cancer cells. After recognizing its antigen, the antibody-drug conjugate is endocytosed by the target cells, where the protein fraction is degraded into lysosomes, releasing the cytotoxic drug. This article reviews antibody-drug conjugates general characteristics and describes the clinical evidence of efficacy and safety of the first four approved by regulatory agencies in the United States and Europe.


Anticuerpos conjugados a fármaco: la nueva generación de terapias biotecnológicas contra el cáncer

Resumen

Los anticuerpos terapéuticos son proteínas recombinantes empleadas en el tratamiento del cáncer. Existe una nueva generación de anticuerpos monoclonales con actividad contra las células cancerosas, conocidos como anticuerpos conjugados a fármacos. Estas moléculas están integradas por tres elementos: un anticuerpo monoclonal, un fármaco citotóxico con alta potencia y un enlazador químico que los une. El anticuerpo reconoce antígenos tumorales, por lo que permite la entrega dirigida del fármaco citotóxico hacia las células cancerosas. Tras el reconocimiento de su antígeno, el anticuerpo conjugado a fármaco es endocitado por las células blanco, donde se induce la degradación lisosomal de la fracción proteica y se libera el fármaco citotóxico. En el presente artículo se revisan las características generales de los anticuerpos conjugados a fármacos y se describe la evidencia clínica de la eficacia y seguridad de los primeros cuatro aprobados por las agencias reguladoras de Estados Unidos y Europa.

Therapeutic antibodies overview

Antibodies are excellent agents that with high specificity inhibit specific molecules. Clinical use of an antibody was first carried out in 1986, after the development of the technology to produce monoclonal antibodies. It was an anti-CD3 murine antibody (muromonab), the use of which, although effective in reducing transplant rejection, was limited by its rapid elimination, poor capability to induce effector functions in the immune system and due to the development of antibodies against the drug.1

To avoid these problems, chimeric, humanized or totally human antibodies have been generated and, by means of protein engineering, the solubility, aggregation and stability profiles have been improved in order to scale up their production. Currently, there are recombinant antibodies that can be therapeutically used. These products, generically known as therapeutic antibodies (TA), are used in the treatment of cancer and other chronic-degenerative or infectious diseases. Owing to the incidence of diseases that can be treated with TAs, as well as to TAs effectiveness and positioning in the market, these agents constitute the fastest growing segment among biotech products, with sales that annually grow by 5.3 %;2 Only in 2018, the Food and Drug Administration (FDA) approved 11 new TAs.3

TAs are immunoglobulins G

All TAs on the market are immunoglobulins G (IgG) that have stability in the circulation, good effector capacity and adequate physicochemical properties for their formulation and administration.4 IgGs are glycoproteins composed of two light chains and two heavy chains (Fig. 1A). The light chain has two immunoglobulin domains: one variable (V\text{L}) and one constant (C\text{L}) at N-terminus. The heavy chain has four immunoglobulin domains, one variable (V\text{H}) and three constant (C\text{H}1, C\text{H}2, and C\text{H}3) at N-terminus. The structure of the antibody is stabilized by disulfide bonds that link light to heavy chains and heavy chains to each other, which confers flexibility and a “Y” shape with two identical antigen-binding fragments (Fab). Each Fab is made up of the variable domains of a heavy and a light chain (Fig. 1B). Hyper-variability of the Fab sequences can generate an almost infinite diversity of antibodies with different specificity.5

The fragment crystallizable region (Fc region) is made up of heavy chains and plays an effector role by binding to specific receptors (Fc\text{R}) expressed on cells of the immune system, the kidney or placenta (Fig. 1C), or by activating the complement. In humans, there are four IgG subclasses with different heavy chains (\gamma1, \gamma2, \gamma3, and \gamma4), which despite being highly similar (90 % identical), each one has a unique profile with regard to:
- Responsiveness to the antigen.
- Antibody-dependent cytotoxicity activation.
- Complement-dependent cytotoxicity activation.
- Antibody-dependent phagocytosis induction.
- Half-life time.
- Placental transfer.6

Fc region glycosylation induces changes in the quaternary structure, which affect its functions; therefore, it is crucial knowing the glycosylation patterns of the different subclasses and their relationship with the antibody functional properties.7 Most TAs used in neoplasms are of the IgG1 isotype, due to its higher capability to induce antibody-dependent cytotoxicity or complement-dependent cytotoxicity in cells that express the target antigen.8

Conjugated antibodies, a new generation of antineoplastic drugs

Antibody-drug conjugates (ADCs) are monoclonal antibodies targeted against tumor antigens, which deliver
cytotoxic payloads to cancer cells; hence, ADCs are considered prodrugs. ADCs have three central elements: the monoclonal antibody carrier, the cytotoxic drug and the chemical linker that allows the conjugation of both (Fig. 2A). The antibody allows antigen-specific recognition in cancer cells. After binding, the ADC-antigen complex is incorporated into the cell by endocytosis and its lysosomal degradation is induced. Consequently, the cytotoxic payload is released inside the cell and triggers cell death by interacting with its target (Fig. 2B). This mechanism takes advantage of the specificity of the antibody to deposit the cytotoxic payload on tumor tissue, thus reducing systemic toxicity and possible resistance.

**Antigen and antibody characteristics**

The target tumor antigen directs ADC biodistribution, and it must therefore be overexpressed in the cells or in the tumor microenvironment and be present at very low levels or absent in healthy tissues. Cell surface proteins are the most widely used targets owing to their accessibility. For example, the efficacy of anti-HER2 TAs is associated with high receptor expression, since up to two million molecules have been found on cancer cells surface. However, in B-cell lymphomas, it is enough for 30,000 molecules per CD19 antigen cell to be expressed for an ADC to exert its effect.

Cells that lack the antigen of interest on their surface may be exposed to the cytotoxic drug if they are close to those that are recognized by the ADC. This mechanism, known as the “innocent bystander effect”, is relevant when the antibody identifies tumor vasculature or stromal antigens or when antigen expression is not homogeneous in solid tumors.

After selecting the antigen, identifying the antibody's optimal isotype is required, which influences on ADC efficacy, pharmacokinetics and therapeutic index. Most ADCs that have been clinically tested are of the IgG1 isotype. As previously mentioned, IgG1s induce antibody-dependent or complement-mediated cytotoxicity; therefore, whether or not maintaining these functions is desired should be evaluated. In general, the antibodies used to generate ADCs should not trigger effector functions. However, when the antibody to be conjugated has therapeutic activity by itself, it may be relevant to retain these functions. The IgG2 and IgG4 isotypes are inefficient to stimulate secondary immune responses. IgG2s allow conjugating a larger number of cytotoxic molecules, since they have four disulfide bridges in the hinge region that can be reduced for conjugation, whereas IgG1 and IgG4 only have two. Although comparative studies have shown that ADCs made up of IgG1 or IgG2 antibodies have similar tolerability and toxicity profiles, IgG2 hinge regions remain more difficult to reduce. Therefore, the design of IgG1 mutated in the Fc region has been chosen in order to attenuate its effector function, while preserving its ability to bind to FcR in order to optimize its half-life.

**Chemical linker characteristics**

The linker is a fundamental part of an ADC since it must allow the release of the drug exclusively at the
site of action. If the drug is released into the circulation, systemic toxicity increases and ADC efficacy decreases. Ideally, the linker should not interfere with the chemotherapeutic agent cytotoxicity, since the cytotoxic agent-linker by-product is what generates the innocent bystander effect. In addition, the linker may serve to counteract resistance to the cytotoxic drug, since hydrophilic linkers generate metabolites that are not substrates for efflux or drug-expulsion active pumps, such as P-glycoprotein (P-gp).

Two main types of linkers are currently used in the development of ADCs: cleavable and non-cleavable. Cleavable linkers are stable for as long as they are circulating and efficiently release the drug after the ADC is endocytosed by the tumor cell. Non-cleavable linkers remain bound to an amino acid of the antibody after its lysosomal degradation. This type of linker is unsuitable for inducing the innocent bystander effect, since the amino acid-linker-cytotoxic agent complex does not spread outside the tumor cell.

Both types of linkers take advantage of lysines or cysteines reactivity in the antibody to form covalent bonds. Conjugation to lysines is efficient, but it generates multiple antibody species with differences in the number of cytotoxic drug molecules and their localization. In addition, since many reactive lysines are found in the C2 domain, conjugation increases ADC aggregation. Conjugation to cysteines requires for them to be in their reduced form and, thus, if those that form interchain disulfide bridges are employed, linkers with two reactive groups must be used in order to allow the bridge to regenerate. This strategy allows better control of the number of molecules of the conjugated cytotoxic drug, but still, more than 100 ADC different species can be generated.

The diversity of species affects ADC’s stability, pharmacokinetics and pharmacodynamics. For this reason, technologies have been developed that seek to increase the proportion of a particular species, such as site-specific conjugation, incorporation of new cysteine residues or non-natural amino acid residues or enzymatic conjugation.

**Cytotoxic drugs characteristics**

The drug conjugated to the antibody is responsible for exerting the cytotoxic effect on tumor cells; therefore, it must meet several characteristics (recently, Yaghoubi et al. carried out a review):

- It must have a mean inhibitory concentration below the nanomolar range, since only 1 to 2 % of the cytotoxic agent reaches its intracellular target.
- Covalent binding to the chemical linker must not interfere with its activity.
- It must be poorly sensitive to P-gp-mediated transport in order to avoid the generation of resistance.
- It must have physicochemical properties that allow its formulation for intravenous administration.
- It must be stable within the pH range existing in the lysosome.

It is difficult to find molecules that meet all these characteristics, which is why most ADCs assessed in humans use agents from three families: calicheamicins, auristatins or maytansinoids.

Calicheamicin is an antitumor agent isolated from the actinomycete *Micromonospora echinospora*. Calicheamicin γ 1 is approximately 1000 times more potent than doxorubicin for inducing cytotoxicity. N-acetyl-γ-calicheamicin, a modified analog, is used in ADCs. Calicheamicins induce cell death by binding to DNA minor groove, preferably to the TCCT/AGGA sequence, forming diradical species that cause DNA strand scission. These compounds are hydrophobic and, therefore, few molecules can be conjugated to the antibody without causing aggregation.

Auristatins are synthetic analogues of dolastatin 10, an antimitotic isolated from the sea hare *Dolabella auricularia* and subsequently from cyanobacteria. Auristatins generate microtubule continuous and excessive growth by binding to the β subunit of tubulin dimers and preventing guanosine triphosphate (GTP) hydrolysis; consequently, sister chromatid separation and mitosis are blocked. While mean inhibitory concentrations of other drugs that inhibit tubulin polymerization, such as vincristine or vinblastine, are in the range of 10⁻⁸ to 10⁻⁹ M, auristatins have average inhibitory concentrations ranging from 10⁻¹⁰ to 10⁻¹² M. Monomethyl auristatin E is a synthetic molecule with optimized physicochemical properties, which is why it has been used in the development of multiple ADCs. When monomethyl auristatin E is conjugated to the antibody by cleavable linkers, the product is hydrophobic enough to induce the innocent bystander effect on neighboring cells.

Maytansinoids are cytotoxic substances derived from maytansine, a macrolide antibiotic isolated from the *Maytenus ovatus* shrub. They bind to the tubulin located at the ends of microtubules, favoring their depolymerization and leading the cell to apoptosis.
1000-fold more potent in vitro than other cytotoxic agents;\textsuperscript{32} emtansine and mertansine are characterized by a substituent that contains a thiol group, which facilitates their conjugation to linkers.\textsuperscript{8} These compounds have good solubility and stability in aqueous solution, but can promote ADC aggregation or limit antigen binding, especially at high conjugation ratios.\textsuperscript{21}

Other cytotoxic agents in ADCs used in clinical trials include doxorubicin,\textsuperscript{33} pyrrolobenzodiazepines,\textsuperscript{34} indolino-benzodiazepines,\textsuperscript{35} camptothecin derivatives,\textsuperscript{36} duocarmycins\textsuperscript{37,} and tubulisins.\textsuperscript{38}

**Available ADCs**

Up to May 2019, four ADCs had received marketing approval by the FDA and the European Medicines Agency (EMA); each one is described below.

**Gemtuzumab ozogamicin**

Gemtuzumab ozogamicin is a humanized anti-CD33 IgG4 conjugated to N-acetyl-\(\gamma\)-calicheamicin by a bifunctional linker.\textsuperscript{39,40} CD33 is a cell-adhesion molecule that belongs to the sialic acid-binding lectin superfamily,\textsuperscript{41} which is expressed in myeloid cells and in approximately 85 to 90 % of patients with acute myeloid leukemia.

In 2000, gemtuzumab ozogamicin was the first ADC to be approved by the FDA for the treatment of patients with relapsed acute CD33+ myeloid leukemia, aged 60 years or older and who were not candidates to other chemotherapies. However, in the post-marketing period, its lack of efficacy and its association with serious side effects and premature death were demonstrated: gemtuzumab ozogamicin addition to standard induction chemotherapy (daunorubicin + cytarabine) did not improve the complete response rate or relapse-free survival,\textsuperscript{42} increased mortality from 1.4 to 5.5 %,\textsuperscript{42} and the incidence of hepatic veno-occlusive disease was approximately 10 %.\textsuperscript{43} For these reasons, the drug was withdrawn from the market in 2010.

Various hypotheses have been proposed to explain the failure of the product: poor stability of the chemical linker, heterogeneity in the amount of drug molecules bound to the antibody, and susceptibility of the cytotoxic agent to be carried by transporters.\textsuperscript{9,17} Given that it is poorly immunogenic, the relationship of anti-ADC antibodies with gemtuzumab ozogamicin efficacy and safety was not identified.\textsuperscript{44}

Subsequent trials demonstrated that lower and more frequent doses increased gemtuzumab ozogamicin efficacy and safety. In adults with newly diagnosed acute myeloid leukemia, the addition of ADC to chemotherapy increased 2-year event-free survival, as well as overall survival.\textsuperscript{45} As monotherapy, it favors obtaining complete responses in children with refractory or recurrent acute myeloid leukemia.\textsuperscript{39} These results contributed to gemtuzumab approval in 2017 by the FDA for the treatment of patients with CD33+ acute myeloid leukemia during adulthood and in children who relapse or who do not respond to primary treatment.\textsuperscript{45} Months later, it was approved by the EMA.\textsuperscript{46} Side effects, although less serious, are still reported.\textsuperscript{40,45}

**Brentuximab vedotin**

Brentuximab vedotin is a chimeric anti-CD30 IgG1 conjugated to monomethyl auristatin E by a cathepsin B-sensitive valine-citrulline cleavable linker.\textsuperscript{47-49} CD30 belongs to the tumor necrosis factor receptor family and normally it is expressed in lymphoid tissues and overexpressed in neoplastic cells of patients with Hodgkin’s lymphoma, anaplastic large cell lymphoma or cutaneous T-cell lymphoma.\textsuperscript{50}

In patients with Hodgkin’s lymphoma who relapse and who fail to respond to autologous stem cell transplantation, brentuximab vedotin monotherapy improves complete response rates, as well as 5-year progression-free survival and overall survival.\textsuperscript{47-49} In patients with previously untreated Hodgkin’s lymphoma, the combination of brentuximab vedotin with doxorubicin, vinblastine, and dacarbazine is equally efficacious and less toxic than adding a fourth chemotherapeutic agent to the therapeutic regimen.\textsuperscript{51,52} Brentuximab vedotin has demonstrated benefits when used as monotherapy in patients with anaplastic large cell lymphoma\textsuperscript{53} or cutaneous T-cell lymphoma,\textsuperscript{54} as it significantly increases overall response rate and progression-free survival.

Brentuximab vedotin induces adverse reactions, especially in patients with impaired liver or kidney function,\textsuperscript{55} or who take drugs that inhibit CYP3A4, since monomethyl auristatin E is metabolized by this cytochrome P450 isoform.\textsuperscript{56}

**Trastuzumab emtansine**

Trastuzumab emtansine is a humanized anti-HER2 IgG1 conjugated to emtansine via a non-cleavable thioether linker bound to lysine residues.\textsuperscript{57,58} HER2 is overexpressed in a subgroup of breast tumors and,
for this reason, trastuzumab was developed as a TA. Trastuzumab pharmacokinetics, pharmacodynamics, and adverse reactions are well known. Trastuzumab emtansine retains the mechanisms of action of the unconjugated antibody, in addition to inducing emtansine cytotoxicity.

In patients with previously-treated locally advanced, unresectable or metastatic HER2+ breast cancer, trastuzumab emtansine is more effective than the combination of capecitabine + lapatinib or a third-line treatment, since it increases progression-free survival and median overall survival. In addition, adverse reactions were better tolerated in the groups treated with the ADC. In contrast, in patients with treatment naïve HER2+ advanced breast cancer, trastuzumab emtansine is not more efficacious than trastuzumab combined with a taxane, and the approval for its use is therefore limited to previously-treated patients.

There are reports of development of resistance to this ADC. This may be due to the following:

- Mechanisms of resistance to trastuzumab.
- ADC inefficient internalization.
- Reduced lysosomal degradation.
- Action of recycling endosomes that allow the HER2-ADC complex to return to the membrane.

Although 5% of patients receiving trastuzumab emtansine develop antibodies against this agent, this does not impact on its efficacy.

Trastuzumab emtansine has been observed to induce multiple adverse responses; thrombocytopenia is the most serious and the one that motivates dose limitations. Like trastuzumab, it can induce left ventricular dysfunction or liver failure. These effects are increased by the consumption of drugs that interfere with emtansine metabolism.

**Inotuzumab ozogamicin**

Inotuzumab ozogamicin is a humanized anti-CD22 IgG4 conjugated to N-acetyl-γ-calicheamicin via the same bifunctional linker used in gemtuzumab ozogamicin. CD22 is a transmembrane glycoprotein of the sialic acid-binding lectins superfamily that is overexpressed in more than 90% of patients with acute lymphoblastic leukemia. Inotuzumab ozogamicin is used as monotherapy for the treatment of adults with relapsing or refractory CD22+ acute lymphoblastic leukemia. In these patients, the use of the ADC significantly increases the rate of patients with complete remission, 2-year overall survival, and the quality of life.

The linker in inotuzumab ozogamicin is stable in systemic circulation, even though it is attributed the toxicity of other ADCs. Inotuzumab ozogamicin induces adverse effects that can be mitigated with preventive measures and signs and symptoms constant monitoring. Although 3% of patients receiving inotuzumab ozogamicin generate antibodies against the product, the impact of this reaction on the agent’s efficacy and safety has not yet been determined.

**Conclusions and perspectives**

Although ADCs represent a breakthrough in oncology, they have various limitations; for example, even when an ADC is indicated for one type of tumor, its usefulness is limited to specific patient subgroups. Therefore, analyzing the effect of ADCs in different populations and types of tumors that express the target antigen is required. An example of this type of analysis is the one related to trastuzumab emtansine efficacy in lung cancer. In addition, the mechanisms by means of which resistance to ADCs is developed should be studied in order to propose strategies to reverse it. Citotoxic drugs efflux is an important factor in resistance and, therefore, combining the ADC with inhibitors of the transporters that allow this mechanism has been proposed, or generating new agents that are not transported. More research on the frequency whereby anti-ADC antibodies are developed and their role in the development of resistance is also necessary.

ADC safety still needs to be improved. Adverse effects are generally caused by induction of healthy cell death. This cytotoxicity might be due to target antigen expression on the cells, to uptake of the conjugate by the cells independently of the antigen or to the cytotoxic drug being released to the circulation by target cells that processed the ADC.

It is to be expected that new ADCs that are more effective and safer will be developed in the near future, since there is sufficient information regarding what the nature of the selected antigen should be, what properties the antibody should have, which are the essential pharmacological and physicochemical properties of the cytotoxic agent and how the linker should work. ADCs will increase survival opportunities and quality of life for cancer patients.

**Acknowledgements**

We thank Dr. Luis Córdoba Bahena for the critical review of the manuscript and the generation of the figures.
Conflict of interests

None

Funding

Funding from Consejo Nacional de Ciencia y Tecnología (project A1-S-18285) was received for this project, as well as support from Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e innovación para Farmacéuticos y Biotecnológicos (LANSEIDarBiotec-CONACyT).

Ethical disclosures

The authors declare that no experiments were performed on humans or animals for this research.

Confidentiality of data. The authors declare that no patient data appear in this article.

References


7. Cobe BA. The history of IgG glycoylation and where we are now. Glycobiology. 2020;30(4):202-213


